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 I

Sommaire 

 

La variance réalisée (RV) joue un rôle crucial dans la finance puisqu’il présente une 

estimation convergente de la variance réelle. Par conséquent, il est important de choisir 

un critère approprié afin de prévoir la RV manifestant la caractéristique de mémoire 

longue. Dans ce rapport, un modèle d’approximation d’autocorrélation (AR) est utilisé 

pour la prévision, car il correspond au processus de mémoire longue. Pour l’amélioration 

de la performance des prévisions, selon le principe de l’erreur de prévision finale (FPE), 

Moon, Perron et Wang (2007) proposent deux nouveaux critères : le FPE1 modifié et le 

FPE2 modifié pour la détermination de l’ordre optimal, ainsi que prévoir plus 

efficacement les processus de mémoire longue. 

 

Ces deux nouveaux critères sont utilisés pour de la prévision hors échantillon de la RV 

afin de sélectionner l’ordre approprié du modèle d’approximation AR. Tous les modèles 

sont exécutés en utilisant les méthodes des fenêtres de récurrence et les fenêtres de 

roulement pour les prévisions de h périodes. La comparaison avec les prévisions obtenues 

en utilisant les critères d’information classiques comme le critère d’information d’Akaike 

(AIC), le critère d’information bayésien (BIC) et le FPE tend à démontrer que le critère 

FPE1 modifié ou le critère FPE2 modifié est supérieur aux autres critères pour la 

prévision de RV à long terme.  
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Abstract 

 

The realized variance (RV) plays a crucial role in finance for it yields a consistent 

estimation of the actual variance. Hence, it is important to choose an appropriate criterion 

to forecast the RV displaying the long memory characteristic. In this paper, an 

autoregressive (AR) approximation model is used for forecasting, since it fits the long 

memory process. For improving the performance of the forecasts, based on the final 

prediction error (FPE) principle, Moon, Perron and Wang (2007) proposed two new 

criteria: the modified FPE1 and the modified FPE2, for determining the optimal lag 

length thus more effectively forecasting the long memory process.  
 

These two new criteria are used in the RV out-of-sample forecasting to select the 

suitable lags for the AR approximation model; all models are run under both the recursive 

windows and rolling windows for the h-step-ahead forecasts. The comparison of the 

forecasting performances of these two criteria and the classical information criteria such 

as the Akaike’s information criterion (AIC), Bayesian information criterion (BIC) and 

FPE indicates that the modified FPE1 or the modified FPE2 criterion is superior to the 

other criteria in the RV forecasting for the long-range forecasts.             
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1 Introduction 

Measuring the variance is one of the central topics in financial analyses. The accuracy 

of estimating and forecasting variances for financial asset pricing, investment portfolio, 

risk management is of particular importance. Among the ways to evaluate the variances, 

the realized variance (RV), as demonstrated in the previous studies, presents a consistent 

measure of the variation of the actual variance. 

 

RV is easily obtained from the high-frequency intra-period returns. It can be computed 

as the sum of squared high-frequency returns within a day. In conformity with 

appropriate conditions, RV is a consistent and highly efficient estimator of the return 

variance (Andersen et al.(2001), Barndorff-Nielsen and Shephard (2001, 2002)).  

 

According to previous studies, the series of logarithmic realized variances (log RV) 

resembles a long memory process. To construct log RV, the autoregressive fractionally 

integrated moving average ( ARFIMA ) model is often selected. (Andersen et al.(2001, 

2001a), Koopman, Jungbacker and Hol (2005)). However, in real practice, there is a low 

success rate in choosing a suitable ARFIMA model (Crato and Ray (1996)). Berk (1974), 

Beran, Bhansali, and Ocker (1998), Hong (1996), as well as Franses and Ooms (1997) 

argued that an autoregressive (AR) approximation model has superior performance in the 

prediction of long memory time series. Ray (1993a) also indicated that the AR 

approximation can be employed in the long-range forecasting of a long memory process. 

 

Model selection, which is obtained by choosing a suitable order for the process, is the 

fundamental step for establishing any time series, and is the most important factor in 

achieving the forecasting accuracy. For better forecasting the RV, it is important to 

choose a suitable order of an AR approximation model. Indeed, the determination of right 

order, represented by the “k” of an )(kAR  approximation model fitted to long memory 

processes is crucial. 
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There are many methods for determining the order of an AR model. With the true 

model is infinite dimension, if an order is selected lower than the true order of the process, 

the estimated error will be very significant; that is, it is not consistent. In contrast, if a 

higher order is selected, an undesirable high variance will emerge (Quenouille (1949), 

Anderson (1963)); although theoretically with the increasing lag length of AR, 

autoregressive errors can be reduced, it still has a drawback of decreasing the degrees of 

freedom. Therefore, to achieve high accuracy of estimation, an appropriate order has to 

be selected. 

 

Many different selection criteria have been employed in estimating the lag length of an 

AR process for a time series in the literature. Generally, there are two kinds of selection 

criteria: efficiency and consistency. In real practice, with the true model is finite 

dimension, the efficient criteria have the drawback of not being able to assist the 

consistent model selections; whereas, consistent criteria forgo the efficiency. Hence, all 

the information criteria have their advantages and disadvantages, and neither can be 

viewed as having superior performance over the others. 

 

According to previous studies, the traditional criteria such as AIC and BIC are widely 

using for the selection of the long memory models. For instance, Sowell (1992b) used 

both the AIC and the BIC in his studies; Cheung (1990) exclusively used the AIC; 

Schmidt and Tschernig (1993) found that the BIC performs better than the other criteria; 

last but not least, Franses and Ooms (1997) also employed the AIC criterion. 

 

To possibly find an alternative solution other than the traditional criteria, and improve 

the performance of forecast by the AR approximation methodology, Moon, Perron and 

Wang (2007) proposed the modified FPE1 criterion. Then, by considering the effective 

number of observations and the degrees of freedom adjustment for the estimated variance, 

the authors defined another new criterion: the modified FPE2. 

 

According Moon, Perron and Wang (2007), the two new criteria obtained by applying 

the suitable value of fractional differencing number d can improve the forecasting 
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accuracy and reduce the lag length of the model. Namely, it can improve both the 

efficiency and simplicity of using the AR approximation model for long memory series. 

 

In the following analysis, the modified FPE1 and the modified FPE2 are compared to 

the classical information criteria in the out-of-sample forecasting of RV. Both the 

recursive windows and rolling windows with h-step-ahead forecasts are employed in this 

paper.  The empirical results show that comparing to the performances of the classical 

information criteria; the modified FPE1 or the modified FPE2 has the best performance 

for forecasting the RV in the long term. 

 

The paper is organized as the following. Section 2 discusses the concept of RV. 

Section 3 defines the h-step-ahead forecast by using the AR approximation. Section 4 

presents the formularies and differences of the information criteria which include the two 

new criteria: the modified FPE1 and the modified FPE2. Section 5 reports the method to 

estimate the fractional differencing number d. Section 6 presents a theoretical background 

of forecasting. Section 7 reports the empirical application. Finally, section 8 presents the 

summary of findings and the according conclusions.   
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2 Realized Variance 

2.1 Realized Variance Theory  

In the empirical studies, the subject of how to model and forecast financial market 

variances has been widely researched and documented. Numerous papers have argued 

that one could measure latent variance by RV (Merton (1980), Andersen et al. (2001) and 

Barndorff-Nielsen and Shephard (2002)), hence RV has been used extensively in the 

financial field.  

 

The first formal presentation of RV was by Merton (1980). Merton (1980) found that 

during a fixed period of time, under the condition of sufficiently high frequency, 

summing the value of the squared high-frequency returns, an independent random 

variable with the same distribution of the variance can be accurately estimated. In his 

research, the data of daily volatility were used to estimate the monthly stock volatilities; 

and a formal presentation of RV was therefore achieved.  

 

Many researches were conducted in this area: Taylor & Xu (1997) and Andersen et al. 

(2001) studied the 10-year DJIA30 index by using five-minute data to explore the 

characteristics of the RV; Areal and Taylor (2002) studied RV in the futures of FTSE-100 

index; Bamdorff-Nielsen and Shephard (2002) achieved the asymptotic distribution of 

RV in the US dollar to German Deutschmark daily exchange rate; Oomen (2003, 2004) 

considered the autoregressive nature of high-frequency data series and examined the 

modeling and characteristic of RV by using 10-year FTSE-100 index data; and  Koopman 

et al. (2005) used the ARFIMA model to forecast the RV of S&P 100 stock index. Their 

results showed that out-of-sample predictability of the ARFIMA model is superior to the 

other models. 
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2.2 Long Memory ARFIMA(p,d,q) Model 

According to previous studies, the log RV series can be modeled by a long memory 

processes. For instance, using an ARFIMA to model the long memory properties is 

presented in Andersen et al. (2001) and Andersen et al. (2003). The log RV is employed 

rather than RV itself is because that log RV is approximately normally distributed. Also, 

based on previous literatures, it is indicated that the log RV has better forecasting 

performance than RV.  

 

Suppose that tx represent a series of log RV. Following the logic of abovementioned 

studies, an ),,( qdpARFIMA  model is employed. tx satisfies the following equation 

(Theorem 3 of Hosking (1996)): 

 txt
d eLxLL ,)()()1)(( θμφ =−−                      (1) 

where  

d ≡  the fractional differencing number which called the memory parameter 

( 5.00 << d ); 

p ≡  the number of autoregressive lags; 

q ≡  the number of moving average lags; 

L ≡  the backward-shift operator (lag operator) such that , ;1−= tt xLx  

 1)( 2
21

p
p LLLL φφφφ −−−−= L , q

q LLLL θθθθ ++++= L2
211)( ;  

where )(Lφ and )(Lθ have distinct zeros and roots lie outside the unit 

circle;   
dL)1( −  ≡  the fractional differencing operator 

function; gamma  theis     ,  
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−Γ
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∞
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μ  ≡  the mean of tx , as μ=)( txE ; 

txe ,  ≡  white noise, namely .,0)( and , )(  ,0)( ,,
22

,, steeEeEeE sxtxtxtx ≠∀=== σ  
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In particular, the ),,( qdpARFIMA  model uses parameters p and q to describe the 

short memory process, and uses the parameter d to reflect the long memory process. 

 

Generally, there are two methods to estimate the ),,( qdpARFIMA  model. The first 

method employs a two-step estimation, whereas the second employs a simultaneous (one-

step) estimation. The method with two-step estimation is commonly used.  

 

For the two-step method, firstly the fractional differencing number, d, is estimated and 

denoted as d̂ . Afterwards, d̂  is used to transform the series into a standard ARMA 

model. Then several information criteria are employed to estimate the parameters p and q.  

 

The second method does not require separate estimations on the value of d and the 

parameters of the ARMA model. It only needs a step to estimate all the parameters, 

which is therefore called the full maximum likelihood estimation (Hosking (1981) and 

Sowell (1987)).  

 

Since it is possible for a data set to have both short and long memory, distinguishing 

the behavior between the two processes is difficult. Consequently, it may pose potential 

model selection difficulties (Ray, 1993a); as a result, there is a low success rate in 

choosing a suitable ARFIMA model (Crato and Ray (1996)).  

 

2.3 Using AR Approximation Model to Represent ARFIMA Process 

Theoretically speaking, when constructing an ARFIMA model, the estimation of the 

fractional differencing number, d, is very complicated, and may not be very accurate, 

especially in finite samples when d is close to 0.5.  

 

Because of its relative simple structure of estimating the parameters, AR model has a 

comprehensive range of applications in the fields such as economics, finance, and 

engineering. According to the literature, ARFIMA process can be approximated well by 
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an AR model (Ray (1993a), Crato and Ray (1996)). Furthermore, based on previous 

studies conducted by Berk (1974), Beran, Bhansali, and Ocker (1998), Hong (1996), as 

well as Franses and Ooms (1997), it is observed that an AR approximation model has 

superior performance in the prediction of long memory time series. Ray (1993a) also 

indicated that the AR approximation could be employed in the long-range forecasting of a 

long-memory process. Thus, the AR approximation method is used for predicating the 

long memory processes in the following study. 

 

Based on Moon, Perron and Wang (2007), the expression of AR approximation model 

that represents the ARFIMA process tx , is:  

txt ex ,0(L) +=Β β                                            

where  ∑
∞

=

− −=−=Β
1

1 1)()()1((L)
i

i
i

d
t LLLLx βθφ  ;     and 

       0)( =txE .  
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3 The h-Step-Ahead Forecast Using AR(k) Approximation 

Forecasting model is a frequently used econometric tool to predict the future by 

effectively using historical information. Ensuring the accuracy of the time series forecasts 

is fundamental for making any further interpretations.  

 

Based on Moon, Perron and Wang (2007), for forecasting the series htx + , the usual h-

step-back substitution can be used. The htx +  can be represented as a function of 

},,{ 1 K−tt xx  as    

∑
∞

=
−+++ ++=

0
,1,0,,

j
jthjhhhtxht xex ββ  .    

                     

However, in practice, an infinite )(∞AR  model should be truncated to a finite )(kAR  to 

approximate the ARFIMA process. 

 

Suppose that the lag k and the coefficients hkhh ,,1,0 ,,, βββ K are known. Then the 

natural h-step-ahead forecast of hTx + at time T with observations kTX ,  is  

1,,1,0, | +−+ +++= kThkThhkThT xxx βββ L   . 

 

However, in real practice, these coefficients are typically unobservable. To forecast 

kThTx , | + , first of all, it is necessary to estimate the coefficients hj ,β (where kj ,,0 K= ) 

based on the historical data. 

 

In this paper, the ordinary least squares (OLS) method is chosen for estimating the 

coefficients, for its estimation is relatively simple and with high accuracy. Also, the OLS 

estimations are considered to be consistent.   
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After estimating the coefficients hj ,β , the estimated values, denoted by hj ,β̂  

(where kj ,,0 K= ) are used in the h-step-ahead forecasting function. Hence, kThTx , | ˆ + can 

be express as: 

1,,1,0, | 
ˆˆˆˆ +−+ +++= kThkThhkThT xxx βββ L . 
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4 Information Criteria 

Information criteria are formed based on solid theoretical foundation and good 

statistical properties. They are standard tools for model selection. Specifically, the 

information criteria are used to select appropriate number of lags when constructing a 

model. It evaluates the selected order from two aspects: the goodness of fit and the model 

complexity. In brief, holding everything else constant, under the prerequisite of the same 

complexity, the model with the higher goodness of fit is better; for similar goodness of fit, 

the simpler model is better.  

 
Many different information criteria are proposed in the literatures. For example, there 

are the Akaike’s information criterion (AIC) (Akaike (1973)), corrected Akaike 

information criterion (AICC) (Hurvich and Tsai (1989)), Bayesian information criterion 

(BIC) or Schwarz information criterion (SIC) (Schwarz (1978)), final prediction error 

(FPE) (Akaike (1969)), Hannan-Quinn criterion (HQC) (Hannan and Quinn (1979)) and 

Mallow’s Cp (Mallows (1973)). Among all these criteria, the AIC and BIC are very 

commonly used. 

 

In general, the selection criteria are classified depends on the efficiency and 

consistency. The efficient criteria (e.g. AIC, AICC, FPE and Cp) emphasize on selecting 

the model that can produce the least mean square prediction error; hence it helps to create 

the best finite-dimensional approximation model when the true model is of infinite 

dimension. In contrast, the consistent criteria (e.g. BIC and HQC) are typically used 

assuming data coming from a finite order autoregressive process, thus asymptotically 

select the true order of the process when the true model is of infinite dimension. However, 

there is normally a trade off between the consistency and the efficiency when the true 

model is finite dimension.  

 

In the following section, the definitions and relative advantages and disadvantages of 

the AIC, BIC, FPE, modified FPE1 and modified FPE2 criteria are presented. 
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4.1 Classical Information Criteria 

AIC criterion 

 

AIC criterion is initially proposed by Akaike (1973) and was successfully applied to 

determine the lag length of an AR model. This method can also be used for selecting the 

order of an ARMA model.  

 

AIC is an unbiased estimator of the expected Kullback-Leibler divergence between the 

fitted and true model. When the series is normally distributed, the AIC criterion can be 

expressed as: 

T
kkAIC k

2)ˆln()( 2 += σ  

Where  

 ˆ 2
kσ  is an estimator of the regression error variance 2σ̂  for the thk order of the 

process; 

 k  is the order of the AR process; 

T   is the sample size. 

 

BIC criterion 

 

The BIC criterion is proposed by Schwarz (1978). It asymptotically approximates the 

integrated likelihood of the model. The BIC criterion can be expressed as: 

)ln()ˆln()( 2 T
T
kkBIC k += σ  

 

FPE criterion 

 

Akaike (1969) proposed FPE criterion to select the lags that minimize the one-step-

ahead mean squared prediction error for the best order of an AR model. 
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For a time series tx , the )(kAR  is  

  , 11 tktktt xxx εφφ +++= −− L  

where 0)( =txE ; mnmknt >==    and   1,...,    ; ,...,1  . 

 

Akaike used  ]ˆ[)( 2
11 ++ −= tt xxEkφ as the objective function to find pk = that gives 

the minimum )(kφ value. Namely, the minimum mean squared prediction error. As a 

result, the k is the optimal estimation of the lag length. It follows: 

kT
kTkkFPE

−
+

= )(ˆ)( 2σ  

 

4.2 Modified FPE Criteria 

Modified FPE1 criterion 

 
To improve the forecast performance of the AR approximation model, Moon, Perron 

and Wang (2007) proposed a new criterion: the modified FPE1. This criterion focus on 

the forecasting performance, thus the efficiency of the model selection is more important.  

 

By following the principle of minimizing the one-step-ahead mean squared prediction 

error, FPE ensures efficiency. However, the data generating process (DGP) that Akaike 

(1969) considered to structure the FPE criterion was actually a short memory process.  As 

a consequence, Moon, Perron and Wang (2007) extend the FPE criterion by considering 

the characteristics of a long memory process while applying the value of fractional 

differencing number d.       

 

Instead of minimizing the one-step-ahead prediction error variance (the mean squared 

error), the modified FPE1 criterion minimizes the h-step-ahead prediction error variance. 

At 1 =h , a special case is encountered: the modified FPE1 minimizes the one-step-ahead 

mean squared error. 
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Based on Moon, Perron and Wang (2007), suppose that the time series tx  is an AR 

approximation process, the k-lag AR approximation of htx +  has the expression as:  

hhtxkthkthhht exxx ,,1,,1,0 ++−+ ++++= βββ L      

 

Define )(Var ,,
2

hhtxh e +=σ , based on the general theory of OLS,  2
hσ can be estimated by  

 ∑
−

+=
+−

=
hT

kt
hhtxkh e

kT
S

1

2
,,

2
, ˆ  1ˆ   (2) 

 

Moon, Perron and Wang (2007) proved that as ∞→T , the h-step-ahead mean 

squared prediction error is: 

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−

−

++

d

hkThThT T
kxxE

21
22

,  |  1~ˆ σ     . 

 

In this formula, there are two unknown parameters:  2
hσ and d. 2

hσ can be estimated 

by  ˆ 2
,khS . For large Ts, it follows   ~ /ˆ 2

h
2
, kTkhST −χσ ; therefore  ˆ 2

,khS
kT

T
−

can be used to 

replace 2 hσ . Then,  ˆ d , estimated by using the GPH method,1 can be used to determine the 

mean squared prediction error of hTx + . 

 

Hence, the modified FPE1 criterion minimizes the mean squared prediction error for 

h-step-ahead prediction:  
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2
,

1 1  ˆ  )(  ,     

where ( 5.0ˆ0 << d ) and (  )0 Tk <≤  

 

                                                 
1The method to estimate d will be presented in the following section.   



 14

If  0ˆ  =d and 1  =h , ;   ˆ  )( 2
,1

1
1 kT

kTSkFPE k
M

−
+

=  this is the same expression as the FPE 

criterion. In addition, for  5.0ˆ0 << d and Tk <≤0 , if d̂  increases, )(1 kFPEM
h  increases 

too.  

  

Using this criterion to select the lag length of an AR approximation model, it follows 

the same intuition as the FPE: when )(1 kFPEM
h is at its minimum, k is the suitable lag 

length for an AR approximation model.  

 

From the expression of the modified FPE1, it is observed that both of the first term 

kT
T
−

 and the third term 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

− d

T
k

ˆ21

1 are increasing functions of k. The second 

term 2
,

ˆ khS  can be estimated by equation (2): ∑
−

+=
+−

=
hT

kt
hhtxkh e

kT
S

1

2
,,

2
, ˆ  1ˆ . According to 

Wooldridge (2006), when k increases, the sum of squared residuals does not increase; 

hence the value of  ˆ 2
,khS decreases with k increasing. Therefore, when the k increases, 

given the size of the data, the second term of the modified FPE1’s expression is 

monotonously decreasing; and the first and the third terms, namely the “penalty terms”, 

are monotonously increasing.  

 

If the second term of the modified FPE1 plays a decisive role, when k increases, the 

value of the modified FPE1 will decrease. On the contrary, if the first and the third term 

of the modified FPE1 are decisive, when k increases, the value of the modified FPE1 will 

increase. When the k reaches a certain value p, the modified FPE1(k) reaches its 

minimum value. Thus, the value k = p is considered the optimal order of an AR process. 
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Modified FPE2 criterion 

 

Moon, Perron and Wang (2007) used the effective number of observations and a 

degrees of freedom adjustment of the estimated variance to define another modified FPE 

criterion, namely modified FPE2: 

  ˆˆ )(
ˆ21

2
,
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max ⎥
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Since 2
,

2
, max

ˆˆ
khkh SS ≤ , the value of  )(2 kFPEM

h is larger than that of )(1 kFPEM
h for the 

same value of k. Furthermore, because the expression of the FPE2 is equivalent to 
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it can be observed that
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2
, 1    ˆ

ˆ
1 max . Hence, the modified FPE2 

has a heavier penalty term than the modified FPE1. Consequently, the lag order selected 

via the modified FPE2 is smaller than the lag order selected via the modified FPE1. 

 

4.3 A Comparison of the Performance of the Two Modified FPE 
Criteria and the Classical Information Criteria 

The quality of the performance of a criterion relies not only on the forecasting 

accuracy but also on the spirit of parsimony.  

 

Since an effective model is the appropriate balance between the underfitting and the 

overfitting for a given sample size, to select a better model, the concept of parsimony 

must be considered. Specifically, with a certain level of forecasting accuracy, a good 

model should be as simple as possible. Generally, simple models are easier to estimate, 

forecast and analyze. Keeping everything else constant, a simpler, more parsimonious 

model with fewer estimated parameters is better than a complex one. 
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When different criteria are used to select the lag length of the model, for equivalent 

prediction accuracy, the criterion with the smallest lag length is preferred, thus is 

considered to have a superior performance. In the following paragraphs, the five criteria 

will be analyzed in comparison with each other to determine the criterion producing the 

smallest lag length. 

 

Base on Moon, Perron and Wang (2007), both the modified FPE1 and the modified 

FPE2 are developed from the FPE; hence, the two new criteria are considered to be 

efficient criteria. As the fractional differencing number d is employed in the two new 

criteria; for 5.0ˆ0 << d , it follows ⎟
⎠
⎞

⎜
⎝
⎛ +>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
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⎞

⎜
⎝
⎛+

−

T
k

T
k d

11 
ˆ21

, hence, the penalty term of 

the modified FPE1 is greater than that of the FPE. As a result, the lag length selected by 

using the modified FPE1 is smaller than the one selected by using the FPE. Base on 

section 4.2, the lag order selected via the modified FPE2 is smaller than the one selected 

via the modified FPE1. Consequently, the modified FPE2 will always select a smaller lag 

length than the FPE too. 
 

In regards to the comparison of the FPE and the AIC, it can be demonstrated that the 

model order selected using the FPE criterion never exceeds the one using the AIC. For 

an )(kAR  process, the lag length selected using the FPE and the AIC are the same when 

the number of observation is large enough but still finite. This is because the two criteria 

are asymptotically equivalent with this condition (Jones (1974)).  

 

BIC is known as the asymptotically consistent criterion (Haughton (1988) (1989)), and 

has the same first term as the AIC. However, instead of the penalty term
T
k2 , it 

uses )ln( T
T
k . Hence, for any )2exp(>T , the penalty term of BIC is larger than the one of 

AIC. Thus the lag length selected via BIC is smaller than the lag length selected via AIC. 
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When comparing the modified FPE1 or FPE2 to the BIC, although the modified FPE1 

and FPE2 depend on the estimated fractional differencing number d and the number of 

observations, it is difficult to compare their penalty terms to the BIC’s. Thus, it can not be 

established which one of these criteria can select the smallest lags.  

 

In conclusion, the lag lengths selected from the above-mentioned criteria have the 

following relations: 

1.   AIC    FPE    FPE1     FPE2 ≤<≤ ; and  

2.   AIC    BIC <  

Hence, the modified FPE2 criterion or BIC criterion can be the one that determines the 

smallest lag length for an AR approximation model.  
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5 Estimation of d 

To estimate the parameters of a long memory process, a number of methods have been 

developed. In general, they can be classified into two groups: the parametric methods and 

the semi-parametric methods. Specifically, the parametric methods comprise the 

Gaussian maximum likelihood (Dahlhaus (1989)), Whittle likelihood (Fox and Taqqu 

(1986) and so on. The semi-parametric methods include GPH estimator (Geweke and 

Porter-Hudak (1983)) and Gaussian semiparametric estimate (Künsch (1986)). 

 

Specifically, Geweke and Porter-Hudak (1983) proposed a widely used semi-

parameter method: periodogram regression (GPH) to estimate the degree of the fractional 

differencing, d. This method is relatively simple thus commonly used.  

 

The GPH method is based on a spectral density function and with the following 

periodogram regression: 

, ) )( ,1,2, (       )
2

sin2ln(2)(ln ngjdaI j
j

jn L=+−= μ
ω

ω  

Where, 

)( jnI ω is the periodogram of the series when ))(,,2,1(  2 ngj
n

j
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πω , 
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xxe
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t
t

it

π
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2

1
∑
=

−
= , where x is the mean of tx . 

 

Select the appropriate number of frequency of regression, )(ng , make ∞=
∞→

)(lim ng
n

, 

when conditions of  0
)(
)ln(lim  and  0)(lim

2

==
∞→∞→ ng

n
n
ng

nn
are satisfied, the estimation of d, by 

using the OLS method, is consistent and )1,0()ˆ(/)ˆ( Ndsdd →−  . 

 

Robinson (1995a) proved the consistency when  0.50 << d . Hassler (1993a) proved 

the consistency and asymptotic normality when txe , of equation (1) is a process with 
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normal distribution. Hassler’s study also indicates that the GPH estimation is effective 

when the data are not normally distributed and with presence of ARCH effects.  

 

When using the GPH for estimating d, the selection of the appropriate number of 

frequency )(ng is very critical. If )(ng is too large, it will cause the estimated amount to 

be too sensitive to a short term memory. Conversely, if  )(ng is too small, it will lead to 

inaccurate estimation. Therefore, GPH suggests that the condition, nng <<)( , must be 

satisfied. 

 

Given the great significance of the ultimate selection of )(ng for the estimation of d, 

usually different number of frequency such as 5.0)( nng = , 6.0)( nng =  and 8.0)( nng = are 

tested. Then, the resulting values of d are compared. 
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6 Forecast Evaluation 

The forecasting methodology can be separated into the in-sample and the out-of-

sample approaches. Considering the fact that the forecasting performance depends on the 

predictive accuracy rather than the goodness-of-fit of the historical data model, Fildes and 

Makridakis (1988) demonstrated that the out-of-sample approach increases the 

forecasting capabilities of the model. Furthermore, selecting the optimal model via the in-

sample approach can not perfectly forecast the out-of-sample data even the in-sample 

approach may decrease the forecast error. As a consequence, the out-of-sample approach 

is selected to compare the forecasting performances in this paper.  

 

In order to employ the in-sample-data to estimate the parameters, the out-of-sample 

approach is operated by first dividing the sample into two parts, and using the first part to 

determine the suitable model.  Secondly, the other part of the sample is used to measure 

the forecasting ability.  

 

For model building, recursive windows and rolling windows approaches emerge as 

two common ways to estimate the parameters. 

 

Under a recursive windows approach, the operation always starts with the initial date, 

and one additional observation will be added for the next operation until reaching the last 

observation of the data set. Conversely, the rolling windows approach keeps the length of 

the in-sample period fixed, the start and end dates successively increase by one 

observation for each operation.  

 

Moreover, the two abovementioned approaches will generate different results under 

varied conditions. For example, when considering the parameter estimation error, in other 

words, the forecasting accuracy, the quantity of data employed in estimating parameters 

has to be seriously evaluated. In this regard, if the series are heterogeneous and with 

structural variety, it is better to use all available in-sample data to estimate the parameters 

which means that the recursive windows approach should be undertake. However, if the 
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earliest available data was somehow generated by DGP method thus unrelated to the 

present, using all available in-sample data may cause bias in parameter estimation and the 

subsequent forecasting.  

 

On the other hand, using the rolling windows approach can reduce the mean squared 

forecast error from a weakened level of heterogeneity obtained by employing a relatively 

smaller sample. However, this gain in reduced heterogeneity from the small sample will 

lead to an increase in the variance of the estimated parameters. This resulting high 

variance will then cause the mean squared forecast error to increase. Consequently, there 

is indeed a dilemma when finding the right size of the data while minimizing the level of 

mean squared error.  

 

To harvest the benefits of the two abovementioned approaches, both recursive and 

rolling windows will be used in this paper.   

 
In addition, in order to evaluate the forecasting accuracy, the mean squared error 

(MSE) and mean absolute error (MAE) are computed: 

∑
=

−=
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Where **T is the number of the out-of-sample forecasts. 

 

The smaller the MSE or MAE, the better the model is; this in turn indicates the 

according criterion, which is used to determine the lag length of the model, produces the 

superior forecasting accuracy. 
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7 Empirical Application 

7.1 Source of Data and Processing 

To accurately determine the RV, the source of the data and its according 

characteristics are very important. The accuracy of the estimation of RV can possibly be 

negatively affected by the measurement errors and the microstructure noise.  

 

In financial markets, information is an important factor influencing the movements of 

stock market prices. Generally speaking, the higher the collection frequency, the more 

information lost. Data with high frequency will cause varying degrees of deficiencies, 

which will in turn induce a biased and inconsistent measure. 

 

On the other hand, the microstructure noise is sometimes caused by bid-ask bounce, 

asynchronous trading, market closing effects and so on. As the sampling frequency 

increases, the microstructure noise becomes less significant. In other words, variance 

reduction can be obtained by utilizing data with high frequency. 

 

Therefore, there is a trade off between the bias and variance when choosing the data 

frequency. Hence it must be carefully chosen in order to find the appropriate balance. 

Various frequencies have been suggested and the typical frequency is with the intra-daily 

interval of five minute proposed by Andersen & Bollerslev (1997b) and Koopman, 

Jungbacker and Hol (2005). 

 

In this paper, six series of RV data2 derived from Standard & Poor’s Depositary 

Receipts (SPDRs) high-frequency data are used. SPDRs are the largest Exchange Traded 

Funds (ETF) in the U.S. and set up to mimic the movements of S&P 500. The value of 

each unit reflects the movements in the index. The price of a unit in the trust is always the 

current value of the S&P 500 divided by 10. The six series are calculated by different 

methods described in Bandi and Russell (2005, 2006). The sample data is for the time 

                                                 
2 I thank Professor Benoit Perron for providing the data.  
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span between January 2, 1998 and March 31, 2006, a total of 2053 observations for each 

of the six series.  

 

7.2 The Descriptive Statistic of the Sample Data 

Table 1 and 2 summarise the descriptions of the sample. From Table 1 and 2, it is 

observed that the mean of RV of the sample is positive; whereas the mean of the log RV 

of the sample is negative. The standard deviation of log RV is relatively small. 

 

From Table 1 and 2 as well as Figure 1 and 2, there are strong evidences indicating 

that the RV series are not normally distributed. All the values of skewness3 (4.66~6.00) 

exceed zero by a large amount which indicates the RV series are heavily skewed to the 

right; all the values of kurtosis (36.10~64.45) exceed 3 greatly which indicates that the 

RV series are with thick tails. In contrast, the log RV series have much smaller kurtosis 

(3.20~4.97) and skewness (0.03~0.29). For this reason, the log RV series are considered 

to asymptotically have a normal distribution.  

 

The six series have very similar characteristics; all of their means and standard 

deviations do not differ greatly. From Table 2, it is observed that their main differences 

are the range value, skewness and kurtosis. Hence the six series can be separated into two 

groups based on these main differences. One group consists of series 1, 2 and 3 with 

smaller range value and kurtosis, and the other consists of series 4, 5 and 6 with smaller 

skewness.                

 
                                                 
3 The “skewness” and “kurtosis” measures are used to describe a distribution. A normal distribution has 

skewness of zero and kurtosis of three. Skewness is a measure of the direction and degree of the asymmetry. 

If skewness is zero, the data are symmetric; if skewness is positive, the data are skewed to the right which 

means that the right tail is longer relative to the left tail; if skewness is negative; the data are skewed to the 

left, which means that the left tail is longer relative to the right tail. The greater the absolute value the 

greater the degree of skewness. Kurtosis is a measure of the thickness of the tails. If kurtosis is greater than 

3, the data are thick in the tails; if kurtosis is less than 3, the data are thin in the tails. 
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7.3 The Existence of Long Memory Test 

To detect and estimate the long memory process, one of the most commonly used 

methods to estimate the fractional differencing number d is the GPH method.  

 

According to Hosking (1981), when 5.00 << d , the series is a stationary long 

memory process; when 05.0 <<− d , the series is an anti-persistent memory process; 

when 15.0  << d , the series is non-stationary process as it has an infinite variance but 

reverting. 

 

The GPH method is used in this study to test the long memory of six series of log RV. 

Because there is no standard way of choosing the frequency, the following formula is 

used ϕTTg =)( , 2053 , ,501 ,500 K=T  ; different ϕ values such as =ϕ 0.5, 0.6, 0.7 and 

0.8 are selected to estimate the d value.  

 

Table 3 presents the value of estimated d̂  by using the recursive windows approach. 

The number of frequency is observed to have a great influence on the value of d̂ . Also, 

from 500=T , all of the estimators are within the following interval )1 ,0(ˆ∈d . 

Furthermore, since )1 ,0()ˆ(/)ˆ( Ndsdd →− , the Student’s t-test statistics for the null 

hypothesis of 0=d  is used to test the significance of d̂ . From Table 3 with results from 

using the recursive windows approach, all the t statistics are greater than all the critical 

values at all the significance level. Hence, the null hypothesis that all the six series are 

not long memory process is rejected.       

 

From Figure 3 and 4, using the recursive windows approach, with the increase of ϕ , 

the standard deviation of d̂ experiences a small change and the proportion of  )5.0 ,0(ˆ∈d  

increases; when 8.0 =ϕ , the proportion of )5.0 ,0(ˆ ∈d  is at its largest.  
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Base on Mood, Perron and Wang (2007), to ensure a better use of the AR 

approximation process, d should be within the following range: 5.00 << d . Hence, for 

the two modified FPE criteria, the ceiling of d̂  is restricted to be 0.49; that is, if the value 

of d̂ are higher than 0.49, 0.49 is used instead of the estimated d̂  . 

 

7.4 Empirical Prediction Approaches 

Six series of data are used in out-of-sample h-step-ahead forecasting employing both 

the recursive windows approach and rolling windows approach. There are a total of 2053 

observations for each series. Accordingly, the data are split into two parts for each series: 

the first part is the in-sample part which has T observations, and the other part is the out-

of-sample part which has 2053-T observations.  

 

Each of the six series is separated into 3 groups according to the different T values. 

Group one is with 500=T , group two is with 1000=T , and group three is with 

1500=T . For each group, daily data are used as the base of the forecast horizons: 

1=h (a day), 5=h (a week), 22=h (a month), 132=h (6 months), 252=h (a year). 

Since the maximum number of lags depends on the length of the series, and in the 

following study, the maximum number is chosen to be equal to 24.  

 

Recursive windows approach  

 

To estimate the lag length, forecasting with recursive windows approach is introduced 

as the following: always start with the first observation and use an increasing data 

window. Thus, the total observations (T*) increase for each time estimation period.    

 

For example, in group one ( 500=T ), for 1 =h , base on the first 500 observations of 

the samples, 1553 models are estimated. At the first time estimation, by using 

observations from 1 to 500 ( 500* =T ), the parameters are estimated by using the number 

of lags p from 0 to 24. Modified FPE1, modified FPE2, FPE, AIC and BIC are 
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subsequently computed by using the estimator 2
,

ˆ phS . The lag length is selected if it is able 

to minimize the criterion. Then, the value of the 501st observation is forecasted.  

 

At the second time estimation, employing observations from 1 to 501, the 

abovementioned method is used for ( 501* =T ) to re-estimate the parameters and to 

construct a new model for forecasting the value of the 502nd observation.  

 

Repeat the process, the model parameters are re-estimated each time; and an additional 

observation is included into the estimation period for 1553 times. At the end, 

observations from 1 to 2052 ( 2052* =T ) are used to forecast the value of the 2053rd 

value.  

 

For h with different numbers, the theory of forecasting is the same; only the total 

number of forecasts done is different. For 1 =h , there are 1553 times; for 5=h there are 

1549 times; for  22=h there are 1532 times; for  132=h there are 1422 times and for 

 252=h there are 1302 times. To compare the forecasting accuracy, the MSE and the 

MAE are used. 

 

For the other two groups ( 1000=T  and 1500), the same steps, as in group one, are 

taken. The differences are the forecast starting points and the total forecast numbers. 

 

Rolling windows approach  

 

When forecasting with the rolling windows approach, similar steps as of the recursive 

windows are taken, except the starting date and the length of the in-sample part. For a 

rolling window, with a fixed moving data window, the total observations (T*) is always 

equal to T for each group forecasting.  

 

For estimating the fractional differencing number, d, different numbers of frequency 

of regression are used: 8.0 ,7.0 ,6.0 ,5.0=ϕ . Thus, 8.07.06.05.0 ,,,)( TTTTTg = . 
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7.5 Empirical Illustration 

7.5.1 Optimal Lag(s) Estimation 

With the help of the criteria, the optimal lags of each period can be estimated. From 

Table 4 and figure 4, it is observed that the variance number of optimal lags in the whole 

data is larger under the recursive windows approach with  1=h , 500 =T  and 5.0 =ϕ  

respectively. For example, for the modified FPE1 criterion, the best order of the model in 

some data achieves to 21, however in some it is only 4. The results demonstrate that 

under varied optimal lags, it is reasonable to use an out-of-sample approach to forecast 

the model.  

 

7.5.2 Forecasting Results 

The MSE and MAE are considered to measure the forecasting accuracy of the model 

selection criteria. In addition, the forecasting accuracy is used to evaluate the forecasting 

performance. 

 

To better interpret the forecasting results, the MSEs and MAEs of all five criteria are 

divided by the MSEs and MAEs of the modified FPE1 criterion to obtain different ratios 

(referred hereafter as the “ratio”). The criterion with the smallest ratios has the best 

forecasting accuracy, thus also best forecasting performance. 

 

From Figure 2 and Table 2, it is observed that series 1, 2 and 3 are somewhat 

comparable whereas series 4, 5, and 6 have very similar characteristics too. Hence, for 

the ease of presentation, only the detailed forecasting results achieved by using both the 

recursive and rolling windows approaches for series 1 and series 5 are analyzed, and only 

the results from the recursive windows approach for series 1 and 5 are reported in detail.  

 

Tables 5 to 26 report the ratios of the MSEs and MAEs of all five criteria relative to 

the ones of the modified FPE1 criterion and the mean lag order selected from the 

recursive windows approach.  
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From the forecasting results, it is observed that the FPE and AIC criteria give the same 

results for all the h-step-ahead forecasts when the size of the in-sample part 500≥T , thus 

they will be denoted as F&A in the following analyses. This result confirms the previous 

theoretical analysis discussed in section 4.3. 

 

According to the forecasting results (Table 5 to 26), the effect of the different forecast 

horizons h, s ϕ 4, the size of the in-sample part and the information criteria are explained 

in the following analysis. 

 

Recursive windows approach  

 

When 1 =h , the modified FPE1 has the smallest ratio for all s  ϕ  tested when 

1500=T  in series 1, as well as when 1000=T  with 0.7 and 0.6 0.5,  =ϕ  and for all sϕ  

tested when 1500=T  in series 5. On the other hand, the F&A has the smallest ratio for 

the rest groups and s  ϕ . 

 

When 5 =h , the modified FPE1 has the smallest ratio when  0001  =T with  0.7  =ϕ in 

series 1 and 0.7 and 0.6 0.5,  =ϕ in series 5, as well as when 1500=T  for all s  ϕ  tested in 

both of series 1 and 5. In contrast, the F&A has the smallest ratio for the rest groups 

and s  ϕ . 

 

When 22=h , the modified FPE1 has the smallest ratio when 500=T for 

0.8 and 0.7 =ϕ  in series 1; whereas, the modified FPE2 has the smallest ratio when 

500=T  and 1000 for  0.6  =ϕ in series 1. On the other hand, the F&A has the smallest 

ratio for the rest groups and s  ϕ . 

 

When 132 =h , the modified FPE1 has the smallest ratio for all s  ϕ  tested when 

1500=T  in series 1, as well as when 500=T  with 8.0 =ϕ  and when 1000=T  for all 

                                                 
4 ϕ  affects the number of frequency of regression and the estimated fractional differencing number ( d̂ ) 
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s ϕ  tested in series 5; whereas, the modified FPE2 has the smallest ratio for all s  ϕ  tested 

when 500=T  and 1000=T  in series 1, as well as when 500=T  with 0.6 0.5,   =ϕ  and 

0.7  in series 5. In contrast, the F&A has the smallest ratio for all s  ϕ  tested when 

1500=T  in series 5. 

 

When 252 =h , the FPE1 has the smallest ratio for all the groups and s  ϕ  tested in 

series 5. On the other hand, the modified FPE2 has the smallest ratio for all the groups 

and s  ϕ  tested in series 1. 

 

Rolling windows approach 

 

When 1 =h , the modified FPE1 has the smallest ratio for all  s  ϕ tested when 

1000=T  in series 1, and for series 5 when 500=T  with 0.7 0.6, 0.5,  =ϕ . The modified 

FPE2 has the smallest ratio when 500=T  with  0.8 0.7, 0.6,  =ϕ in series 1 and when 

1500=T  with  0.8  =ϕ in series 5. On the other hand, the F&A has the smallest ratio for 

all s ϕ tested when 1500=T  in series 1 and when 500=T  with  8.0  =ϕ in series 5. The 

BIC has the smallest ratio for all sϕ tested when 500=T  and 1000, as well as when 

1500=T  with 0.7 0.6, 0.5, =ϕ  in series 5 and when 500=T  with  0.5  =ϕ in series 1. 

 

When 5 =h , the modified FPE1 has the smallest ratio when 1000=T  with  0.7  =ϕ  

and 1500=T  with  0.8  =ϕ in series 1. The modified FPE2 has the smallest ratio when 

500=T  with 0.8 0.7, 0.6,  =ϕ , 1000=T  with  0.8 0.6, 0.5,  =ϕ and almost all sϕ  

except  0.8  =ϕ when 1500=T in series 1 and when 1500=T  with  0.7 0.6, ,5.0 =ϕ in 

series 5. In contrary, the F&A has the smallest ratio when 1000=T  with 

 0.8 , 0.7 =ϕ and when 1500=T  with  0.8  =ϕ in series 5. The BIC has the smallest ratio 

when 500=T  for  0.5 =ϕ in series 1 and when 500=T  with all sϕ  tested and when 

1000=T  with  0.6 0.5, =ϕ in series 5. 
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When 22=h , the modified FPE2 has the smallest ratio when 500=T  with 

 0.8 0.7,  =ϕ in series 5; whereas, the F&A has the smallest ratio when 1000=T  and 1500 

with all s  ϕ tested in series 1 and 5. The BIC has the smallest ratio when 500=T  for all 

s ϕ  tested in series 1 and when 500=T  for  0.6 0.5,  =ϕ in series 5. 

 

When 132=h , the modified FPE1 has the smallest ratio when 1500=T  for 

 0.7 0.6, 0.5, =ϕ in series 1 and when 500=T  for  0.6 0.5,  =ϕ in series 5. The modified 

FPE2 has the smallest ratio when 1000=T  for all sϕ  tested in series 1 and when 

500=T  for  0.8 0.7,  =ϕ in series 5. On the other hand, the F&A has the smallest ratio 

when 1500=T  for  0.8  =ϕ in series 1 and when 1000=T  and 1500 for all s  ϕ  tested in 

series 5. The BIC has the smallest ratio when 500=T  for all sϕ  tested in series 1. 

 

When 252 =h , the modified FPE1 has the smallest ratio, when 500=T  with  0.5  =ϕ , 

1500=T  with  0.7 0.6, 0.5, =ϕ in series 5. The modified FPE2 has the smallest ratio, 

when 1000=T  and 1500 for all sϕ  tested in series 1 and when 500=T  with 

 0.8 0.7, =ϕ and 1000=T  with  0.8  =ϕ in series 5. In contrast, the F&A has the smallest 

ratio when 1500=T  for  0.8  =ϕ in series 5. The BIC has the smallest ratio when 

500=T for all s  ϕ  tested in series 1 and when 500=T  with  0.6 =ϕ and 1000=T  with 

  0.7 0.6, 0.5, =ϕ in series 5. 

 

Analysis of the summarized forecasting results 

 

Based on the forecasting results, the conclusions are obtained as the following. 

  

By using the recursive windows approach, in most cases, the modified FPE1 or the 

modified FPE2 produces the best forecasting accuracy comparing to other criteria when 

the forecast horizons 132≥h  days. In addition, when 5≤h days and the size of in-

sample part 1000≥T , the modified FPE1 achieves the superior forecasting performance. 
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On the other hand, the FPE and AIC in general perform considerable better than the 

others when 1325 ≤< h  days. 

 

By using the rolling windows approach, the modified FPE1 or FPE2 has the best 

forecasting performance in most cases when the forecast horizons 252≥h  days and the 

size of in-sample part 500>T . When 252<h  days, the modified FPE1 or FPE2 has the 

best performance in several instances which depends on the in-sample size and the 

estimated fractional differencing number d̂ . In general, the forecasting gains are small in 

the short-range forecast.  

  

In fact, it is difficult to identify which modified FPE criterion is better. Based on the 

formulas of the two modified criteria, the fractional differencing number, d, utilize in 

both modified FPE1 and FPE2, has an effect on the lag choice which in turn influences 

the structure of the forecasting model. Thus, the resulting forecasting accuracy certainly 

will be different as it depends on factors such as the characteristics of the series, the size 

and the variances of the in-sample part. Therefore, for a long-range5 forecast, in most 

cases, for all the estimated fractional differencing number d̂ , the modified FPE1 or FPE2 

has the best forecasting performance. 

 

In most cases, when the modified FPE1 criterion has the best forecasting performance, 

it selects the smallest mean lag length comparing to AIC, BIC and FPE.  

 

In addition, the mean lag length obtained from the modified FPE2 is the smallest 

when 132 ≥h  days by using the recursive windows approach, and when 252≥h  days by 

using the rolling windows approach. Particularly, when 252≥h  days, the mean lag 

length obtained from the modified FPE2 is close to zero when using the recursive 

windows approach with the in-sample size 500 ≥T , and when using the rolling windows 

approach with 1500 ≥T . The most parsimonious model is therefore achieved in this case. 

In this regard, for long-range forecasts, the model can be estimated by using only the 

                                                 
5 With the forecast horizons  132 ≥h days by using recursive windows, or  252 ≥h days by using rolling    
windows 
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simple regression model instead of the AR model when employing the modified FPE2 

criterion.  

 

Consequently, the modified FPE1 or FPE2 has a superior forecasting performance for 

the forecasting of RV in the long term, since it outperforms the other criteria in terms of 

the forecasting accuracy and the smallest mean lag length. 

 

In summary, independent of the selected approach (recursive windows or the rolling 

windows approach), one of the modified FPE criteria will have the best performance for 

forecasting the RV in the long-range forecasts. 
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8 Conclusion 

This paper has analyzed two new modified FPE criteria to determine the lag length of 

the AR approximation model for forecasting the RV. I use the the SPDRs high-frequency 

RV data, analyze the model characteristics of RV which resembles a long memory 

processes, and apply the AR approximation model using h-step-ahead out-of-sample 

forecasting. Both the recursive and rolling windows approaches are employed. 

 

To evaluate the two new criteria, the forecasting performance of the modified FPE1 

and FPE2 are compared to the classical information criteria such as the AIC, BIC and 

FPE criteria. The forecasting accuracy is examined to evaluate the forecasting 

performance of the RV by using different information criteria. To evaluate the accuracy, 

the MSE and MAE values are calculated. For ease of comparison, the ratios of MSEs and 

MAEs relative to the modified FPE1 are used in this paper. Hence, the criterion with the 

smallest ratio has the superior forecasting accuracy. Specifically, the information 

criterion producing a high level of forecasting performance is superior to the other criteria 

for forecasting the RV. 

 

The comparison of the forecasting results indicates that: for long-range forecast using 

both of the recursive and rolling windows approaches, both the theoretical results and the 

empirical practices show that the modified FPE1 or the modified FPE2 will result in 

superior performance, in terms of not only the forecasting accuracy but also the 

simplicity, comparing to the classical information criteria. On the other hand, for a short-

range forecast, the forecasting gain for both of the modified FPE1 and FPE2 are small, 

their usefulness is more doubtful. 

 

As a result, for long-range forecast of the RV, the modified FPE1 or FPE2 criterion is 

recommended. 
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Figures  

Figure 1 - Original RV 
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Figure 2 - Log RV 
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(X axis: the number of observations; Y axis: the value of Log RV) 
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Figure 3 - Estimators of “d ”  
(Series 1, Recursive windows approach) 
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(X axis: the number of observations; Y axis: the value of estimated “d ”) 
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Figure 4 - Estimators of “d ”   
(Series 5, Recursive windows approach) 
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(X axis: the number of observations; Y axis: the value of estimated “d ”) 
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Figure 5 - Optimal Lag(s) 
 (Series 1, h=1, T=500, g(T)=T0.5, Recursive windows approach)  
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(X axis: the number of observations; Y axis: the lag length) 
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Tables 

Table 1 - Original RV 
 
 y1 y2 y3 y4 y5 y6 

min 3.848e-006 3.274e-006 3.41e-006 1.236e-007 1.236e-007 1.236e-007 

max 0.001258 0.001539 0.001529 0.001292 0.001292 0.001292 

mean 8.938e-005 7.919e-005 7.829e-005 7.048e-005 7.121e-005 7.098e-005 

median 6.001e-005 5.287e-005 5.217e-005 4.848e-005 4.868e-005 4.85e-005 

mode 3.848e-006 2.653e-005 2.398e-005 7.018e-005 7.083e-005 7.072e-005 

std 0.000102 9.524e-005 9.456e-005 8.119e-005 8.135e-005 8.108e-005 

range 0.001254 0.001535 0.001526 0.001291 0.001291 0.001291 

skewness 4.6631 6.0010 6.0491 5.9806 5.9822 6.0119 

kurtosis 36.0963 63.6935 64.4499 63.7455 63.4539 64.0936 

 
 
 
 

Table 2 - Log RV 
 
 x1 x2 x3 x4 x5 x6 

min -12.47 -12.63 -12.59 -15.91 -15.91 -15.91 

max -6.678 -6.477 -6.483 -6.652 -6.652 -6.652 

mean -9.687 -9.815 -9.826 -9.906 -9.888 -9.887 

median -9.721 -9.848 -9.861 -9.934 -9.93 -9.934 

mode -12.47 -10.54 -10.64 -9.565 -9.555 -9.557 

std 0.8233 0.8248 0.8241 0.8058 0.7955 0.7846 

range 5.79 6.153 6.106 9.254 9.254 9.254 

skewness 0.2388 0.2891 0.2940 0.0631 0.0339 0.1238 

kurtosis 3.2030 3.1654 3.1795 4.6279 4.9724 4.8250 
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Table 3 - Estimator of “d ” Value 
(Series 1 and 5, Recursive windows approach) 

 

Series 1 

          g(T) 
   d̂             

5.0T  6.0T  7.0T  8.0T  

min 0.2244 0.3724 0.3746 0.3854 

max 0.9727 0.8986 0.6678 0.5818 

mean 0.6205 0.6184 0.5371 0.4772 

std 0.1126 0.0924 0.0569 0.0292 

t tste 5.5106 6.6926 9.4394 16.342 

Series 5 

min 0.4413 0.4503 0.3941 0.3688 

max 0.9116 0.7738 0.6659 0.5599 

mean 0.6387 0.6344 0.5510 0.4790 

std 0.07352 0.06235 0.04749 0.02829 

t test 8.6874 10.1748 11.6024 16.9318 

 
 
 

 
Table 4 - The Optimal Lag Length of the Model  

(Series 1, h=1, T=500, Recursive windows approach) 
 

 

 Modified 
FPE1 

Modified 
FPE2 FPE AIC BIC 

Min 4 2 10 10 3 

Max 21 13 18 18 7 

Mean 12.1 7.295 11.91 11.91 4.766 

std 4.578 2.946 1.46 1.46 0.6952 
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Table 5 - MSE and MAE of Forecast Errors Relative to FPE_M1                                 
(Series 1:  T=500,  g(T)=T0.5) 

 
1 5 22 132 252 h 

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(12.1017) (10.0844) (5.9742) (5.1565) (0.5892) 

0.9977 0.9986 1.0085 1.0046 1.0003 1.0007 0.9734 0.9890 0.9739 0.9881 
2MFPE  

(7.2949) (7.2872) (4.1983) (0.7064) (0.0135) 

0.9952 0.9978 0.9978 0.9999 0.9946 0.9975 1.0089 0.9994 1.0266 1.0122 
FPE  

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9952 0.9978 0.9978 0.9999 0.9946 0.9975 1.0089 0.9994 1.0266 1.0122 
AIC 

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9997 1.0003 1.0114 1.0067 1.0005 1.0001 0.9772 0.9888 0.9909 0.9952 
BIC 

(4.7663) (6.5010) (4.1539) (0.9008) (0.2428) 

(Parentheses represent the mean lag order) 

 

 

Table 6 - MSE and MAE of Forecast Errors Relative to FPE_M1                                 
(Series 1:  T=500,  g(T)=T0.6) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(12.6504) (10.3207) (6.6240) (6.3226) (0.5847) 

1.0000 0.9979 1.0051 1.0012 0.9929 0.9934 0.9701 0.9884 0.9742 0.9881 
2MFPE  

(7.4082) (7.2595) (4.3451) (0.7424) (0.0135) 

0.9952 0.9959 0.9970 0.9988 0.9939 0.9973 1.0026 0.9975 1.0271 1.0126 
FPE  

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9952 0.9959 0.9970 0.9988 0.9939 0.9973 1.0026 0.9975 1.0271 1.0126 
AIC 

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9997 0.9983 1.0105 1.0056 0.9997 0.9999 0.9710 0.9869 0.9914 0.9956 
BIC 

(4.7663) (6.5010) (4.1539) (0.9008) (0.2428) 

(Parentheses represent the mean lag order) 
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Table 7 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 1:  T=500,  g(T)=T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(11.4688) (9.9511) (5.7914) (4.3310) (0.5396) 

0.9990 0.9972 1.0055 1.001 1.0038 1.0017 0.9670 0.9857 0.9732 0.9872 
2MFPE  

(6.9446) (7.1333) (3.9408) (0.6265) (0.0064) 

0.9969 0.9988 0.9977 0.9989 1.0004 1.0017 1.0006 0.9950 1.0263 1.0118 
FPE  

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9969 0.9988 0.9977 0.9989 1.0004 1.0017 1.0006 0.9950 1.0263 1.0118 
AIC 

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

1.0014 1.0013 1.0112 1.0057 1.0062 1.0044 0.9690 0.9845 0.9906 0.9949 
BIC 

(4.7663) (6.5010) (4.1539) (0.9008) (0.2428) 

(Parentheses represent the mean lag order) 

 
 
 

Table 8 - MSE and MAE of Forecast Errors Relative to FPE                                    
(Series 1:  T=500,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(8.8178) (8.5293) (4.3168) (1.8680) (0.3432) 

1.0068 1.0042 1.0135 1.0035 1.0169 1.0122 0.9819 0.9911 0.9855 0.9939 
2MFPE  

(5.2730) (6.3071) (2.9472) (0.3967) (0.0006) 

0.9961 1.0001 0.9998 0.9995 1.0001 1.0032 1.0228 1.0046 1.0366 1.0170 
FPE  

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

0.9961 1.0001 0.9998 0.9995 1.0001 1.0032 1.0228 1.0046 1.0366 1.0126 
AIC 

(11.9131) (10.2537) (7.0026) (7.5171) (2.1249) 

1.0006 1.0026 1.0134 1.0063 1.0060 1.0058 0.9906 0.9940 1.0005 1.0000 
BIC 

(4.7663) (6.5010) (4.1539) (0.9008) (0.2428) 

(Parentheses represent the mean lag order) 
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Table 9 - MSE and MAE of Forecast Errors Relative to FPE_M1                                 
(Series 1:  T=1000,  g(T)=T0.5) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(9.8348) (  9.5081) (6.2612) (2.6410) (0.6638) 

1.0088 1.0053 1.0093 1.0055 1.0023 1.0038 0.9717 0.9850 0.9687 0.9862 
2MFPE  

(5.9810) (7.5973) (4.3495) (0.3799) (0.0085) 

0.9990 1.0007 0.9989  1.0010 0.9929 0.9964 1.0093 0.9971 1.0309 1.0147 
FPE  

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

0.9990 1.0007 0.9989 1.0010 0.9929 0.9964 1.0093 0.9971 1.0309 1.0147 
AIC 

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

1.0063 1.0072 1.0137 1.0083  0.9987 0.9998 0.9768 0.9853 0.9895 0.9946 
BIC 

(5.0237) (6.9373) (4.6059) (0.8784) (0.2270) 

(Parentheses represent the mean lag order) 

 
 
 

Table 10 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 1:  T=1000,  g(T)=T0.6) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(10.9772) (9.9525) (7.2896) (  4.6800) (0.6638) 

1.0078 1.0026 1.0059 1.0013 0.9918 0.9941 0.9648 0.9800 0.9687 0.9846 
2MFPE  

(6.3495) (7.7284) (4.6876) (0.4596) (0.0085) 

0.9986 0.9981 0.9988 0.9996 0.9914 0.9955 0.9983 0.9901 1.0312 1.0149 
FPE  

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

0.9986 0.9981 0.9988 0.9996 0.9914 0.9955 0.9983 0.9901 1.0312 1.0149 
AIC 

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

1.0059 1.0046 1.0136 1.0069 0.9973 0.9990 0.9661 0.9784 0.9897 0.9947 
BIC 

(5.0237) (6.9373) (4.6059) (0.8784) (0.2270) 

(Parentheses represent the mean lag order) 

 



 XXI

Table 11 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 1:  T=1000,  g(T)=T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(10.4539) (9.7673) (6.4520) (3.3115) (0.6638) 

1.0074 1.0033 1.0066 1.0027 1.0077 1.0044 0.9641 0.9913 0.9687 0.9846 
2MFPE  

(6.1852) (7.6733) (4.4302) (0.3704) (0.0085) 

0.9975 0.9987 1.0002 1.0014 0.9983 0.9997 0.9987 0.9913 1.0312 1.0149 
FPE  

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

0.9975 0.9987 1.0002 1.0014 0.9983 0.9997 0.9987 0.9901 1.0312 1.0149 
AIC 

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

1.0049 1.0052 1.0151 1.0088 1.0042 1.0032 0.9665 0.9796 0.9897 0.9947 
BIC 

(5.0237) (6.9373) (4.6059) (0.8784) (0.2270) 

(Parentheses represent the mean lag order) 

 

 

Table 12 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 1:  T=1000,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(8.2469) (8.7502) (4.9706) (1.3922) (0.4587) 

1.0066 1.0069 1.0120 1.0042 1.0223 1.0134 0.9832 0.9915 0.9826 0.9923 
2MFPE  

(5.1368) (6.8870) (3.5280) (0.2441) (0.0009) 

0.9945 0.9988 0.9982 0.9987 0.9946 0.9977 1.0267 1.0061 1.0426 1.0208 
FPE  

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

0.9945 0.9988 0.9982 0.9987 0.9946 0.9977 1.0267 1.0061 1.0426 1.0208 
AIC 

(11.9801) (10.1425) (7.9212) (7.2802) (2.8424) 

1.0019 1.0053 1.0131 1.0060 1.0005 1.0012 0.9936 0.9942 1.0007 1.0005 
BIC 

(5.0237) (6.9373) (4.6059) (0.8784) (0.2270) 

(Parentheses represent the mean lag order) 

 



 XXII

Table 13 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 1:  T=1500,  g(T)= T0.5) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(10.5769) (10.8626) (6.8987) (0.6184) (0.8445) 

1.0087 1.0045 1.0074 1.0029 1.0124 1.0078 1.0096 1.0086 0.9715 0.9861 
2MFPE  

(6.5118) (8.8499) (5.7378) (0.3472) (0.0163) 

1.0019 1.0012 1.0002 1.0001 0.9890 0.9937 1.0157 1.0035 1.0392 1.0190 
FPE  

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0019 1.0012 1.0002 1.0001 0.9890 0.9937 1.0157 1.0035 1.0392 1.0190 
AIC 

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0089 1.0103 1.0116 1.0075 1.0174 1.0094 1.0002 0.9991 0.9844 0.9919 
BIC 

(5.0452) (7.7848) (5.4611) (0.6781) (0.3219) 

(Parentheses represent the mean lag order) 

 
 
 

Table 14 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 1:  T=1500,  g(T)= T0.6 or T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(10.6944) (10.9222) (6.9783) (0.6184) (0.8445) 

1.0064 1.0041 1.0057 1.0016 1.0122 1.0067 1.0095 1.0079 0.9714 0.9854 
2MFPE  

(6.8373) (8.9367) (5.7631) (0.3472) (0.0163) 

1.0008 1.0010 1.0012 1.0008 0.9900 0.9942 1.0162 1.0038 1.0397 1.0193 
FPE  

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0008 1.0010 1.0012 1.0008 0.9900 0.9942 1.0162 1.0038 1.0397 1.0193 
AIC 

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0079 1.0101 1.0126 1.0083 1.0184 1.0099 1.0007 0.9994 0.9849 0.9922 
BIC 

(5.0452) (7.7848) (5.4611) (0.6781) (0.3219) 

(Parentheses represent the mean lag order) 

 



 XXIII

Table 15 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 1:  T=1500,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(8.9060) (9.9675) (6.1989) (0.5407) (0.5642) 

1.0071 1.0101 1.0141 1.0046 1.0221 1.0108 1.0176 1.0106 0.9948 0.9984 
2MFPE  

(5.4539) (7.8553) (5.0344) (0.3454) (0.0018) 

1.0003 1.0010 1.0025 0.9998 0.9852 0.9903 1.0195 1.0032 1.0584 1.0584 
FPE  

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0003 1.0010 1.0025 0.9998 0.9852 0.9903 1.0195 1.0032 1.0584 1.0584 
AIC 

(12.4141) (10.9403) (9.1700) (2.6546) (4.0958) 

1.0073 1.0101 1.0139 1.0072 1.0134 1.0059 1.0039 0.9988 1.0026 1.0015 
BIC 

(5.0452) (7.7848) (5.4611) (0.6781) (0.3219) 

(Parentheses represent the mean lag order) 

 
 
 

Table 16 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=500,  g(T)=T0.5) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(12.1880) (9.5010) (8.7553) (1.7624) (0.1726) 

1.0070 1.0026 0.9987 1.0002 1.0150 1.0091 0.9895 0.9969 1.0051 1.0036 
2MFPE  

(8.0135) (6.9665) (3.7579) (0.6594) (0.0670) 

0.9978 0.9992 0.9977 0.9977 0.9963 0.9958 1.0059 0.9991 1.0182 1.0087 
FPE  

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

0.9978 0.9992 0.9977 0.9977 0.9963 0.9958 1.0059 0.9991 1.0182 1.0087 
AIC 

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

1.0000 0.9960 1.0081 1.0063 1.0145 1.0101 0.9977 0.9994 0.9987 1.0001 
BIC 

(4.9994) (5.9285) (3.5003) (0.9008) (0.1127) 

(Parentheses represent the mean lag order) 

 



 XXIV

Table 17 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=500,  g(T)=T0.6) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(12.1487) (9.4797) (8.4746) (1.7379) (0.1668) 

1.0074 1.0039 1.0003 1.0003 1.0131 1.0075 0.9891 0.9968 1.0063 1.0041 
2MFPE  

(7.9878) (6.9549) (3.7476) (0.6439) (0.0670) 

0.9992 1.0007 0.9979 0.9979 0.9964 0.9962 1.0050 0.9983 1.0194 1.0092 
FPE  

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

0.9992 1.0007 0.9979 0.9979 0.9964 0.9962 1.0050 0.9983 1.0194 1.0092 
AIC 

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

1.0014 0.9975 1.0083 1.0065 1.0145 1.0105 0.9968 0.9986 0.9998 1.0006 
BIC 

(4.9994) (5.9285) (3.5003) (0.8719) (0.1127) 

(Parentheses represent the mean lag order) 
 
 
 

Table 18 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=500,  g(T)=T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(11.6587) (9.2917) (7.6072) (1.6098) (0.1545) 

1.0061 1.0020 1.0031 1.0010 1.0144 1.0078 0.9912 0.9978 1.0064 1.0043 
2MFPE  

(7.6735) (6.9086) (3.6265) (0.6182) (0.0670) 

0.9986 0.9989 0.9974 0.9974 0.9973 0.9975 1.0085 1.0000 1.0196 1.0094 
FPE  

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

0.9986 0.9989 0.9974 0.9974 0.9973 0.9975 1.0085 1.0000 1.0196 1.0094 
AIC 

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

1.0008 0.9957 1.0078 1.0060 1.0155 1.0118 1.0003 1.0003 1.0000 1.0008 
BIC 

(4.9994) (5.9285) (3.5003) (0.8719) (0.1127) 

(Parentheses represent the mean lag order) 
 



 XXV

Table 19 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=500,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(9.0670) (8.0019) (4.7656) (0.8944) (0.1056) 

1.0134 1.0057 1.0045 1.0019 1.0211 1.0106 1.0045 1.0033 1.0081 1.0051 
2MFPE  

(5.6787) (6.3123) (2.7978) (0.4076) (0.0290) 

0.9991 0.9989 0.9970 0.9987 0.9965 0.9974 1.0262 1.0073 1.0211 1.0105 
FPE  

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

0.9991 0.9989 0.9970 0.9987 0.9965 0.9974 1.0262 1.0073 1.0211 1.0105 
AIC 

(11.4179) (9.9433) (7.8989) (2.9028) (0.5750) 

1.0013 0.9957 1.0074 1.0073 1.0147 1.0117 1.0178 1.0076 1.0015 1.0019 
BIC 

(4.9994) (5.9285) (3.5003) (0.8719) (0.1127) 

(Parentheses represent the mean lag order) 
 
 
 

Table 20 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 5:  T=1000,  g(T)=T0.5) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(11.1510) (8.9060) (6.8509) (0.5717) (0.0617) 

1.0132 1.0054 1.0084 1.0082 1.0236 1.0137 1.0033 1.0050 1.0096 1.0062 
2MFPE  

(7.8490) (7.4558) (4.0674) (0.2953) (0.0342) 

1.0011 1.0006 1.0017 0.9996 0.9898 0.9923 1.0188 1.0062 1.0223 1.0110 
FPE  

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

1.0011 1.0006 1.0017 0.9996 0.9898 0.9923 1.0188 1.0062 1.0223 1.0110 
AIC 

(11.1918) (10.3286) (8.2830) (0.7189) (0.5461) 

1.0080 1.0033 1.0165 1.0150 1.0236 1.0131 1.0102 1.0062 0.9990 1.0004 
BIC 

(5.0009) (6.3048) (3.9516) (0.9008) 0.0703 

(Parentheses represent the mean lag order) 

 



 XXVI

Table 21 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=1000,  g(T)=T0.6) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(11.2460) (8.9601) (6.8661) (0.5745) (0.0617) 

1.0121 1.0050 1.0083 1.0081 1.0226 1.0128 1.0028 1.0048 1.0096 1.0062 
2MFPE  

(7.9573) (7.4558) (4.1016) (0.2953) (0.0342) 

1.0011 1.0009 1.0017 0.9995 0.9909 0.9927 1.0183 1.0059 1.0223 1.0110 
FPE  

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

1.0011 1.0009 1.0017 0.9995 0.9909 0.9927 1.0183 1.0059 1.0223 1.0110 
AIC 

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

1.0080 1.0036 1.0164 1.0148 1.0247 1.0135 1.0097 1.0060 0.9990 1.0004 
BIC 

(5.0009) (6.3048) (3.9516) (0.7189) (0.0703) 

(Parentheses represent the mean lag order) 
 
 
 

Table 22 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=1000,  g(T)=T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(11.1899) (8.8946) (6.8613) (0.56600) (0.0617) 

1.0130 1.0056 1.0071 1.0075 1.0228 1.0126 1.0047 1.0056 1.0096 1.0062 
2MFPE  

(7.8186) (7.4558) (4.0712) (0.2953) (0.0342) 

1.0011 1.0005 1.0005 0.9989 0.9909 0.9929 1.0202 1.0068 1.0223 1.0110 
FPE  

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

1.0011 1.0005 1.0005 0.9989 0.9909 0.9929 1.0202 1.0068 1.0223 1.0110 
AIC 

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

1.0081 1.0031 1.0152 1.0142 1.0248 1.0137 1.0116 1.0068 0.9990 1.0004 
BIC 

(5.0009) (6.3048) (3.9516) (0.7189) (0.0703) 

(Parentheses represent the mean lag order) 
 



 XXVII

Table 23 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=1000,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(9.7360) (8.1567) (6.0019) (0.4767) (0.0617) 

1.0105 1.0052 1.0032 1.0039 1.0275  1.0151 1.0120 1.0087 1.0096 1.0062 
2MFPE  

(6.0855) (7.0513) (3.4520) (0.2830) (0.0342) 

0.9965 0.9975 0.9974 0.9957 0.9829 0.9895 1.0263 1.0089 1.0222 1.0110 
FPE  

(11.1918) (10.3286) (8.2830) (2.4786) (0.5461) 

0.9965 0.9975 0.9974 0.9957 0.9829 0.9895 1.0263 1.0089 1.0222 1.0110 
AIC 

(11.1918) (10.3286) (8.2830) (0.7189) (0.5461) 

1.0034 1.0002 1.0121 1.0110 1.0165 1.0102 1.0176 1.0089 0.9989 1.0004 
BIC 

(5.0009) (6.3048) (3.9516) (0.9008) (0.0703) 

(Parentheses represent the mean lag order) 

 

 

Table 24 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=1500,  g(T)=T0.5) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(10.0000) (8.9349) (9.8427) (0.8825) (0.1175) 

1.0121 1.0067 1.0030 1.0026 1.0366 1.0196 1.0285 1.0176 1.0227 1.0128 
2MFPE  

(7.4485) (8.7722) (5.1139) (0.5624) (0.0651) 

1.0004 1.0004 1.0039 1.0001 0.9913 0.9942 0.9759 0.9875 1.0031 1.0017 
FPE  

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0004 1.0001 1.0039 1.0001 0.9913 0.9942 0.9759 0.9875 1.0031 1.0017 
AIC 

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0089 1.0066 1.0190 1.0150 1.0420 1.0213 1.0013 1.0015 0.9977 1.0009 
BIC 

(5.0018) (6.5805) (4.8156) (0.8969) (0.1338) 

(Parentheses represent the mean lag order) 



 XXVIII

Table 25 - MSE and MAE of Forecast Errors Relative to FPE_M1                               
(Series 5:  T=1500,  g(T)=T0.6, T0.7) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  (10.0000) (8.9349) (9.8427) (0.8825) (0.1175) 

1.0121 1.0067 1.0030 1.0026 1.0366 1.0196 1.0285 1.0176 1.0227 1.0128 
2MFPE  

(7.4485) (8.7722) (5.1139) (0.5624) (0.0651) 

1.0004 1.0001 1.0039 1.0001 0.9913 0.9942 0.9759 0.9875 1.0031 1.0017 
FPE  

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0004 1.0001 1.0039 1.0001 0.9913 0.9942 0.9759 0.9875 1.0031 1.0017 
AIC 

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0089 1.0066 1.0190 1.0150 1.0420 1.0213 1.0013 1.0015 0.9977 1.0009 
BIC 

(5.0018) (6.5805) (4.8156) (0.8969) (0.1338) 

(Parentheses represent the mean lag order) 

 

 

Table 26 - MSE and MAE of Forecast Errors Relative to FPE_M1                                
(Series 5:  T=1500,  g(T)=T0.8) 

 
1 5 22 132 252            h  

 
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1MFPE  

(9.6474) (8.8535) (8.7902) (0.8680) (0.1175) 

1.0147 1.0107 1.0018 1.0019 1.0318 1.0181 1.0290 1.0186 1.0243 1.0143 
2MFPE  

(6.2966) (8.0018) (4.6944) (0.5389) (0.0651) 

1.0005 1.0089 1.0042 1.0000  0.9823 0.9901 0.9737  0.9866 1.0028 1.0017 
FPE  

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0005 1.0089 1.0042 1.0000  0.9823 0.9901 0.9737  0.9866 1.0028 1.0017 
AIC 

(10.0488) (11.5298) (11.2297) (1.5244) (0.6347) 

1.0089 1.0080 1.0193 1.0149 1.0325 1.0171 0.9990 1.0006 0.9974 1.0008 
BIC 

(5.0018) (6.5805) (4.8156) (0.8969) (0.1338) 

(Parentheses represent the mean lag order) 

 


